Философские аспекты проблемы систем ИИ

       

Экспертные системы, параллельные и последовательные решения


Как мы можем заметить, в большинстве алгоритмов распознавания образов подразумевается, что к началу работы алгоритма уже известна вся входная информация, которая перерабатывается параллельно. Однако ее получение зачастую требует определенных усилий. Да и наши наблюдения за реальными экспертами подтверждают, что зачастую они задают два-три вопроса, после чего делают правильные выводы. Представьте себе, если бы врач (эксперт в области медицины) перед постановкой диагноза "ангина" заставлял бы пациента пройти полное обследование вплоть до кулоноскопии и пункции позвоночника (я не пробовал ни то и ни другое, но думаю, что это малоприятные вещи, а также значительная потеря времени).

Соответственно большинство алгоритмов модифицируются, чтобы обеспечить выполнение следующих условий:

  • алгоритмы должны работать в условиях неполной информации (последовательно);
  • последовательность запроса информации должна быть оптимальна по критериям быстроты получения результата и (или) наименьшей трудоемкости (болезненности, стоимости и т.д.) получения этой информации.

Одной из возможных стратегий для оптимизирования запросов является стратегия получения в первую очередь той информации, которая подтверждает либо опровергает наиболее вероятный на текущий момент результат. Другими словами мы пытаемся подтвердить или опровергнуть наши догадки (обратный вывод).



Содержание раздела