Философские аспекты проблемы систем ИИ

       

Генетический алгоритм (ГА)


Генетический алгоритм является самым известным на данный момент представителем эволюционных алгоритмов, и по своей сути является алгоритмом для нахождения глобального экстремума многоэкстремальной функции. ГА представляет собой модель размножения живых организмов.

Для начала представим себе целевую функцию от многих переменных, у которой необходимо найти глобальных максимум или минимум:

f(x1, x2, x3, …, xN)

Для того чтобы заработал ГА, нам необходимо представить независимые переменные в виде хромосом. Как это делается?

Как создать хромосомы?

Первым Вашим шагом будет преобразование независимых переменных в хромосомы, которые будут содержать всю необходимую информацию о каждой создаваемой особи. Имеется два варианта кодирования параметров:

  • в двоичном формате;
  • в формате с плавающей запятой.

В случае если мы используем двоичное кодирование, мы используем N бит для каждого параметра, причем N может быть различным для каждого параметра. Если параметр может изменяться между минимальным значением MIN и максимальным MAX, используем следующие формулы для преобразования:

r = g*(MAX – MIN) / (2^N – 1) + MIN.

g = (r – MIN) / (MAX – MIN) * (2^N – 1)

где g – целочисленные двоичные гены,

r – эквивалент генов в формате с плавающей запятой.



Хромосомы в формате с плавающей запятой, создаются при помощи размещения закодированных параметров один за другим.

Если сравнивать эти два способа представления, то более хорошие результаты дает вариант представления в двоичном формате (особенно, при использовании кодов Грея). Правда, в этом случае мы вынуждены мириться с постоянным кодированием/декодированием параметров.

Как работает генетический алгоритм?

В общем, генетический алгоритм работает следующим образом. В первом поколении все хромосомы генерируются случайно. Определяется их "полезность". Начиная с этой точки, ГА может начинать генерировать новую популяцию. Обычно, размер популяции постоянен.

Репродукция состоит из четырех шагов:

  • селекции

и трех генетических операторов (порядок применения не важен)


  • кроссовер
  • мутация
  • инверсия
Роль и значение селекции мы уже рассмотрели в обзоре эволюционных алгоритмов.

Кроссовер является наиболее важным генетическим оператором. Он генерирует новую хромосому, объединяя генетический материал двух родительских. Существует несколько вариантов кроссовера. Наиболее простым является одноточечный. В этом варианте просто берутся две хромосомы, и перерезаются в случайно выбранной точке. Результирующая хромосома получается из начала одной и конца другой родительских хромосом.

001100101110010|11000

-------->

001100101110010 11100

110101101101000|11100

Мутация представляет собой случайное изменение хромосомы (обычно простым изменением состояния одного из битов на противоположное). Данный оператор позволяет более быстро находить ГА локальные экстремумы с одной стороны, и позволяет "перескочить" на другой локальный экстремум с другой.

00110010111001011000

-------->

00110010111001111000

Инверсия инвертирует (изменяет) порядок бит в хромосоме путем циклической перестановки (случайное количество раз). Многие модификации ГА обходятся без данного генетического оператора.

00110010111001011000

-------->

11000001100101110010

Очень важно понять, за счет чего ГА на несколько порядков превосходит по быстроте случайный поиск во многих задачах? Дело здесь видимо в том, что большинство систем имеют довольно независимые подсистемы. Вследствие этого, при обмене генетическим материалом часто может встретиться ситуация, когда от каждого из родителей берутся гены, соответствующие наиболее удачному варианту определенной подсистемы (остальные "уродцы" постепенно вымирают). Другими словами, ГА позволяет накапливать удачные решения для систем, состоящих из относительно независимых подсистем (большинство современных сложных технических систем, и все известные живые организмы). Соответственно можно предсказать и когда ГА скорее всего даст сбой (или, по крайней мере, не покажет особых преимуществ перед методом Монте-Карло) - системы, которые сложно разбить на подсистемы (узлы, модули), а так же в случае неудачного порядка расположения генов (рядом расположены параметры, относящиеся к различным подсистемам), при котором преимущества обмена генетическим материалом сводятся к нулю.Последнее замечание несколько ослабляется в системах с диплоидным (двойным) генетическим набором.

Эволюционное (генетическое) программирование

Данные, которые закодированы в генотипе, могут представлять собой команды какой-либо виртуальной машины. В таком случае мы говорим об эволюционном или генетическом программировании. В простейшем случае, мы можем ничего не менять в генетическом алгоритме. Однако в таком случае, длина получаемой последовательности действий (программы) получается не отличающейся от той (или тех), которую мы поместили как затравку. Современные алгоритмы генетического программирования распространяют ГА для систем с переменной длиной генотипа.


Содержание раздела